An accurate and widely applicable method to determine the distribution of synaptic strengths formed by the spike-timing-dependent learning
نویسندگان
چکیده
We provide a mathematical method to determine the distribution of synaptic strengths formed by any types of spike-timing-dependent plasticity (STDP). This becomes possible by applying the theory of Ornstein–Uhlenbeck process in determining the Fokker–Planck equation that characterizes the distribution. We verify our novel method by reproducing quantitative properties of STDP observed in previous simulation results. We apply our method to CA1-type window function and electric sh-type window function to demonstrate possible implications of STDP. Moreover, we derive basic properties of STDP from our formalism. Especially, we determine the optimal window function for synaptic competition. c © 2002 Elsevier Science B.V. All rights reserved.
منابع مشابه
Spike timing dependent plasticity: mechanisms, significance, and controversies
Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...
متن کاملSpike timing dependent plasticity: mechanisms, significance, and controversies
Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...
متن کاملRole of STDP in regulation of neural timing networks in human: a simulation study
Many physiological events require an accurate timing signal, usually generated by neural networks called central pattern generators (CPGs). On the other hand, properties of neurons and neural networks (e.g. time constants of neurons and weights of network connections) alter with time, resulting in gradual changes in timing of such networks. Recently, a synaptic weight adjustment mechanism has b...
متن کاملRole of STDP in regulation of neural timing networks in human: a simulation study
Many physiological events require an accurate timing signal, usually generated by neural networks called central pattern generators (CPGs). On the other hand, properties of neurons and neural networks (e.g. time constants of neurons and weights of network connections) alter with time, resulting in gradual changes in timing of such networks. Recently, a synaptic weight adjustment mechanism has b...
متن کاملA Stochastic Method to Predict the Consequence of Arbitrary Forms of Spike-Timing-Dependent Plasticity
Synapses in various neural preparations exhibit spike-timing-dependent plasticity (STDP) with a variety of learning window functions. The window functions determine the magnitude and the polarity of synaptic change according to the time difference of pre- and postsynaptic spikes. Numerical experiments revealed that STDP learning with a single-exponential window function resulted in a bimodal di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neurocomputing
دوره 44-46 شماره
صفحات -
تاریخ انتشار 2002